Nonlinear least squares

Asymptotic confidence intervals for NLS regression in R

Introduction Nonlinear regression model As a model setup, we consider noisy observations \(y_1,\ldots, y_n \in \mathbb{R}\) obtained from a standard nonlinear regression model of the form: \[ \begin{aligned} y_i &\ = \ f(\boldsymbol{x}_i, \boldsymbol{\theta}) + \epsilon_i, \quad i = 1,\ldots, n \end{aligned} \] where \(f: \mathbb{R}^k \times \mathbb{R}^p \to \mathbb{R}\) is a known nonlinear function of the independent variables \(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n \in \mathbb{R}^k\) and the unknown parameter vector \(\boldsymbol{\theta} \in \mathbb{R}^p\) that we aim to estimate.